Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast

نویسندگان

  • Po-Lin Yang
  • Tzu-Han Hsu
  • Chao-Wen Wang
  • Rey-Huei Chen
چکیده

The neutral lipids steryl ester and triacylglycerol (TAG) are stored in the membrane-bound organelle lipid droplet (LD) in essentially all eukaryotic cells. It is unclear what physiological conditions require the mobilization or storage of these lipids. Here, we study the budding yeast mutant are1Δ are2Δ dga1Δ lro1Δ, which cannot synthesize the neutral lipids and therefore lacks LDs. This quadruple mutant is delayed at cell separation upon release from mitotic arrest. The cells have abnormal septa, unstable septin assembly during cytokinesis, and prolonged exocytosis at the division site at the end of cytokinesis. Lipidomic analysis shows a marked increase of diacylglycerol (DAG) and phosphatidic acid, the precursors for TAG, in the mutant during mitotic exit. The cytokinesis and separation defects are rescued by adding phospholipid precursors or inhibiting fatty acid synthesis, which both reduce DAG levels. Our results suggest that converting excess lipids to neutral lipids for storage during mitotic exit is important for proper execution of cytokinesis and efficient cell separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for seipin in lipid droplet dynamics and inheritance in yeast.

Malfunctions of processes involved in cellular lipid storage and mobilization induce the pathogenesis of prevalent human diseases such as obesity, type 2 diabetes and atherosclerosis. Lipid droplets are the main lipid storage depots for neutral lipids in eukaryotic cells, and as such fulfil an essential function to balance cellular lipid metabolism and energy homeostasis. Despite significant pr...

متن کامل

A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast

Stationary phase (stat-phase) is a poorly understood physiological state under which cells arrest proliferation and acquire resistance to multiple stresses. Lipid droplets (LDs), organelles specialized for cellular lipid homeostasis, increase in size and number at the onset of stat-phase. However, little is known about the dynamics of LDs under this condition. In this paper, we reveal the passa...

متن کامل

Regulation of lipid droplets by metabolically controlled Ldo isoforms

Storage and consumption of neutral lipids in lipid droplets (LDs) are essential for energy homeostasis and tightly coupled to cellular metabolism. However, how metabolic cues are integrated in the life cycle of LDs is unclear. In this study, we characterize the function of Ldo16 and Ldo45, two splicing isoforms of the same protein in budding yeast. We show that Ldo proteins interact with the se...

متن کامل

Jcb_201404115 1..10

Lipid droplets (LDs) are ubiquitous organelles that store triacylglycerol and sterol esters for use by cells to produce energy and membranes (Martin and Parton, 2006; Walther and Farese, 2012). LDs emerge from the ER (Kassan et al., 2013; Pol et al., 2014), and their number, size, and distribution vary under different growth conditions (Yang et al., 2012). LDs are capable of interacting with ma...

متن کامل

A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A)

KP1019 ([trans-RuCl4(1H-indazole)2]; FFC14A) is one of the promising ruthenium-based anticancer drugs undergoing clinical trials. Despite the pre-clinical and clinical success of KP1019, the mode of action and various factors capable of modulating its effects are largely unknown. Here, we used transcriptomics and genetic screening approaches in budding yeast model and deciphered various genetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016